error_bar¶
- alpsplot.utils.group_err_bar(x, y)[source]¶
Group (
x
,y
) to be a dict.y_dict[x0] = [y0, y1, ...]
.- Parameters:
x (numpy.ndarray) – The x array.
y (numpy.ndarray) – The y array.
- Returns:
dict[float, numpy.ndarray] – The result dict.
- Example:
>>> import numpy as np >>> from alpsplot.utils import group_err_bar >>> >>> x = np.array([1., 2., 3.] * 2) >>> x array([1., 2., 3., 1., 2., 3.]) >>> y = np.arange(6.0) >>> y array([0., 1., 2., 3., 4., 5.]) >>> group_err_bar(x, y) {1.0: array([0., 3.]), 2.0: array([1., 4.]), 3.0: array([2., 5.])}
- alpsplot.utils.flatten_err_bar(y_dict)[source]¶
Flatten
y_dict
to be data list(x, y)
.- Parameters:
y_dict (dict[float, numpy.ndarray]) – The dict to flatten.
- Returns:
(numpy.ndarray, numpy.ndarray) – The x, y array.
- Example:
>>> import numpy as np >>> from alpsplot.utils import group_err_bar, flatten_err_bar >>> >>> x = np.array([1., 2., 3.] * 2) >>> x array([1., 2., 3., 1., 2., 3.]) >>> y = np.arange(6.0) >>> y array([0., 1., 2., 3., 4., 5.]) >>> y_dict = group_err_bar(x, y) >>> y_dict {1.0: array([0., 3.]), 2.0: array([1., 4.]), 3.0: array([2., 5.])} >>> flatten_err_bar(y_dict) (array([1., 1., 2., 2., 3., 3.]), array([0., 3., 1., 4., 2., 5.]))
- alpsplot.utils.adjust_err_bar(y_dict, mean=None, std=None)[source]¶
Adjust
y_dict
withmean
andstd
.- Parameters:
y_dict (dict[float, numpy.ndarray]) – The dict to adjust.
mean (numpy.ndarray]) – The new mean values for
y_dict
.None
means keeping the original mean values[y_dict[x].mean() for x in y_dict.keys()]
. Defaults toNone
.std (numpy.ndarray]) – The new std values for
y_dict
.None
means keeping the original std values[y_dict[x].std() for x in y_dict.keys()]
. Defaults toNone
.
- Returns:
dict[float, numpy.ndarray] – The new dict.
- Example:
>>> import numpy as np >>> from alpsplot.utils import group_err_bar, adjust_err_bar >>> >>> x = np.array([1., 2., 3.] * 2) >>> x array([1., 2., 3., 1., 2., 3.]) >>> y = np.arange(6.0) >>> y array([0., 1., 2., 3., 4., 5.]) >>> y_dict = group_err_bar(x, y) >>> y_dict {1.0: array([0., 3.]), 2.0: array([1., 4.]), 3.0: array([2., 5.])} >>> adjust_err_bar(y_dict) {1.0: array([0., 3.]), 2.0: array([1., 4.]), 3.0: array([2., 5.])} >>> adjust_err_bar(y_dict, mean=0.3, std=0.4) {1.0: array([-0.1, 0.7]), 2.0: array([-0.1, 0.7]), 3.0: array([-0.1, 0.7])} >>> adjust_err_bar(y_dict, mean=np.zeros(3), std=np.ones(3)) {1.0: array([-1., 1.]), 2.0: array([-1., 1.]), 3.0: array([-1., 1.])}
- alpsplot.utils.normalize_err_bar(x, y)[source]¶
Normalize
x
andy
into range[0, 1]
.each
x
might correspond to multipley
values and therefore generate an error band on y-axis. The mean ofy
is normalized into[0, 1]
.- Parameters:
x (numpy.ndarray) – The x array.
y (numpy.ndarray) – The y array.
- Returns:
(numpy.ndarray, numpy.ndarray) – The normalized x, y array.
- Example:
>>> import numpy as np >>> from alpsplot.utils import group_err_bar, normalize_err_bar >>> >>> x = np.array([1., 2., 3.] * 2) >>> x array([1., 2., 3., 1., 2., 3.]) >>> y = np.arange(6.0) >>> y array([0., 1., 2., 3., 4., 5.]) >>> normalize_err_bar(x, y) (array([0. , 0. , 0.5, 0.5, 1. , 1. ]), array([-1.5, 1.5, -1. , 2. , -0.5, 2.5]))
- alpsplot.utils.avg_smooth_err_bar(x, y, window=3, **kwargs)[source]¶
Average smooth
x
andy
using window sizewindow
.Each
x
might correspond to multipley
values and therefore generate an error band on y-axis. The mean ofy
is smoothed.- Parameters:
x (numpy.ndarray) – The x array.
y (numpy.ndarray) – The y array.
window (int) – the
window
argument passed toalpsplot.utils.avg_smooth()
. Defaults to3
.
- Returns:
(numpy.ndarray, numpy.ndarray) – The smoothed x, y array.
- Example:
>>> import numpy as np >>> from alpsplot.utils import group_err_bar, avg_smooth_err_bar >>> >>> x = np.array([1., 2., 3.] * 2) >>> x array([1., 2., 3., 1., 2., 3.]) >>> y = np.arange(6.0) >>> y array([0., 1., 2., 3., 4., 5.]) >>> avg_smooth_err_bar(x, y) (array([1., 1., 2., 2., 3., 3.]), array([0.33333333, 3.33333333, 1. , 4. , 1.66666667, 4.66666667])) >>> avg_smooth_err_bar(x, y, window=5) (array([1., 1., 2., 2., 3., 3.]), array([0.6, 3.6, 1. , 4. , 1.4, 4.4]))